

Reversal of Stereoselectivity in the Evans Aldol Reaction of α,α-Difluoro and α,α-Trifluoro Carbonyl Compounds

Katsuhiko Iseki,* Satoshi Oishi and Yoshiro Kobayashi*

MEC Laboratory, Daikin Industries Ltd., Miyukigaoka, Tsukuba, Ibaraki 305, Japan

Abstract: The Evans aldol reaction of hexafluoroacetone and trifluoroacetaldehyde causes complete reversal of diastereofacial selectivity. The boron enolate derived from N-acyloxazolidinone 2 reacts with trifluoroacetaldehyde to give anti and "non-Evans" syn aldols with stereoselectivity in the range of 7:3-17:3. With α,α -difluoroaldehyde 4b, a small amount of the normal syn aldol was formed. However, the anti aldol was the major product.

INTRODUCTION

The synthesis of chiral fluoroorganic compounds is an important aspect of organofluorine chemistry in connection with biological and medicinal chemistry in consideration of the influence of fluorine's unique properties on biological activity. Recently, these compounds have become focal points of interest due to potential application to optoelectronic substances such as liquid crystals. Fluorine-containing molecules with unexpected and generally unusual reactivity are often difficult to synthesize, and methodologies for synthesizing nonfluorinated chiral compounds are frequently impractical, giving rise to the term "flustrate" by Seebach.

In the Evans aldol reaction, aldehyde reacts preferentially on the *Re* face of the double bond of boron enolate 1 to provide the normal Evans syn aldol (E₁) selectively.⁴ The reversal in diastereofacial selectivity of 1 has been shown possible through addition of dibutylboron triflate (Bu₂BOTf) in excess⁵ or Lewis acids⁶ to give non-Evans syn (E₂) and anti (T₂) aldols (Scheme 1).

Bu Bu R²CHO Reface attack
$$E_1$$
 ("Evans" syn)

 R^2 Reface attack R^2 Reface a

In this study, the unexpected reversal of stereochemistry in the Evans aldol reaction of N-acyloxazolidinone 2 with α,α -diffuoro and α,α,α -trifluoro carbonyl compounds and applications of this finding to phenylglyoxal and ethyl glyoxylate are discussed.⁷

RESULTS AND DISCUSSION

Reactions with hexafluoroacetone. Reactions of the boron enolate prepared from chiral N-acyloxazolidinone 2a-b with hexafluoroacetone were examined by the standard procedure reported by Evans et al. 8 Imide 2 was first treated with Bu₂BOTf and triethylamine (Et₃N) to obtain boron enolate 1, and gaseous hexafluoroacetone was added at -78 °C. After warming to -30 °C,9 the reaction mixture was quenched with phosphate buffer and MeOH followed by oxidative workup. Aldols 3 were isolated by flash chromatography. As shown in Table 1, hexafluoroacetone gave 3 selectively in synthetically significant yields. These results are intriguing, as hexafluoroacetone has been shown to react predominantly on the Si face of the enolate double bond to bring about the complete reversal of normal Evans stereoselectivity even in the absence of excess Bu₂BOTf or Lewis acids. Relative stereochemical assignments of 3 were made by X-ray crystallography.

Table 1. Aldol Reactions of Imide 2 with hexafluoroacetone

O O O O CF₃

R i) Bu₂BOTf (1.2 eq), Et₃N (1.3 eq)
in CH₂Cl₂, -78 °C
$$\rightarrow$$
0 °C

ii) hexafluoroacetone
-78 °C \rightarrow -30 °C

Entry	Imi	de 2	Product 3		
	R		% yielda)	% deb)	
1	Me	(2a)	90	>99 (R) ^{c)}	(3a)
2	Bn	(2b)	86 (94)	$>99 (R)^{c}$	(3b)

a) All yields are those of isolated compounds. Value in parentheses are conversion yields; b) Des were determined by capillary GC; c) Configuration of a new asymmetric center. Relative stereochemical assignments were definitely established based on X-ray structure analysis.

Reactions with aldehydes. Aldehyde 4 was allowed to react with boron enolate 1 according to the standard procedure. Saseous trifluoroacetaldehyde (4a) was added to the boron enolate at -78 °C and the reaction system was warmed to 0 °C over 2h prior to quenching. As shown in Table 2, 4a reacted preferentially on the Si face of the enolate double bond and caused the complete reversal of normal Evans stereoselectivity to provide anti aldols (T2) selectively along with "non-Evans" syn aldols (E2) (entries 1-4). Anti-syn ratios ranged from 7:3 to 17:3. The addition of $TiCl_46a$ to the boron enolate prior to the aldehyde resulted in loss of anti-syn selectivity (46:54, entry 5). Since α , α -difluoroaldehyde 4b, phenylglyoxal (4c) and ethyl glyoxylate (4d) easily undergo self-condensation, these aldehydes were added at -5 °C followed by stirring at the same temperature for 30 min prior to quenching. With α , α -difluoroaldehyde 4b, a small amount of the normal Evans syn aldol (E1) was formed. However, anti aldol T2 was the major product (entry 6). Reaction with phenylglyoxal (4c) gave "non-Evans" syn aldol E2 and anti aldol T2 in the ratio of 7:9, and the "Evans" syn aldol (E1) was produced only to a slight degree (entry 7). With ethyl glyoxylate (4d), the E2-T2-E1-T1 ratio was 35:44:20:1 (entry 8). Although these three aldehydes (4b-d) reacted partially on the Re face of the enolate double bond, the Si face attack was a predominant factor in bringing about the reversal of normal Evans diastereofacial selectivity.

Table 2. Aldol Reactions of Imide 2 with Aldehydes

Entry		Imide 2		Aldehyde 4	Aldol 5		
	R	R¹		R ²	% yield ^{a)}	$E_2 : T_2 : E_1 : T_1^{b}$	
1	Me	iРт	(2a)	CF ₃ (4a)	62 (65)	15 : 85 : 0 : 0 (5	
2	Bn	iPr	(2b)	CF ₃ (4a)	64 (75)	30 : 70 : 0 : 0 (5	
3	n-Bu	iPr	(2c)	CF ₃ (4a)	60 (64)	19 : 81 : 0 : 0 (5	
4	Me	Bn	(2d)	CF ₃ (4a)	80	22 : 78 : 0 : 0 (5	
5c)	Me	iPr	(2a)	CF ₃ (4a)	83 (88)	54 : 46 : 0 : 0 (5	
6	Me	iPr	(2a)	Ph(CH ₂) ₃ CF ₂ (4b)	33 (56)	12 : 82 : 6 : 0 (5	
7	Me	iPr	(2a)	PhCO (4c)	55 (65)	42 : 54 : 4 : 0	
8	Me	iPr	(2a)	EtOCO (4d)	50 (55)	35 : 44 : 20 : 1 (5	

a) All yields are those of isolated compounds. Value in parentheses are conversion yields; b) Ratios were determined by capillary GC and isolated yields; c) The reaction was carried out in the presence of TiCl₄.

All the aldol products in Table 2 are new compounds. The relative and absolute stereochemical assignments were confirmed based on X-ray structure analysis (5a) and conversion to stereochemically confirmed compounds (except for 5a). Aldol 5b-E₂ was converted to acetal 6 by reduction (LiBH₄) and acetalization (PhCH(OMe)₂, TsOH), and 5b-T₂ was converted to 7 in the same manner. ¹¹ The reduction of 5c-E₂ and 5c-T₂ with LiBH₄ gave diols 8 and 9, respectively. ¹² That of 5d-E₂ with LiBH₄ and benzoylation gave 10 which was prepared from 5a-E₂. In the same manner, 5d-T₂ was converted to 11 which was prepared from 5a-T₂. The reduction of aldols 5e-E₂ and 5e-T₂ gave diols 12 and 13, respectively. ¹³ Aldol 5e-E₁ was converted to the enantiomer of 12 in the same manner. Aldols 5f-E₂ and 5f-T₂ were converted to diols 14 and 15, respectively by reduction (LiBH₄), acetylation (Ac₂O, Py), hydrogenolysis (H₂, Pd-C) and deacetylation (K₂CO₃ in MeOH). ¹⁴ In the same manner, 5f-E₁ was converted to the enantiomer of 14. Ethanolysis (NaH in EtOH, 0 °C) of 5g-E₂ and 5g-T₂ gave diesters 16 and 17, respectively. ¹⁵ In the same manner, 5g-E₁ and 5g-T₁ were converted to the enantiomers of 16 and 17, respectively.

Mechanism. The present results call for the mechanism shown in Scheme 2. We think that with aldehydes such as CH₃CHO, PhCHO, etc., aldol reaction occurs via the closed transition state to yield the

normal Evans syn aldol (E₁) as proposed by Evans et al.⁴ Hexafluoroacetone and aldehydes 4a-d may react with boron enolate 1 only or preferentially through open transition states to cause the reversal of stereoselectivity. The anti (T₂) and non-Evans syn (E₂) aldols result from the open transition states A and B, respectively, and transition state A is preferred because of electrostatic and steric interactions. In the presence of TiCl₄, open transition state C may compete with A (Table 2, entry 5).

Table 3. Ab Initio Calculations of Carbonyl Compounds with the RHF/3-21G Basis Set¹⁶

Carbonyl Compounds		gy Levels	Mulliken Atomic		
	НОМО	LUMO	O	C	(boron enolate 1)
CH ₃ CHO	-0.4145	0.1542	-0.519	0.520	Re (normal Evans)
PhCHO	-0.3535	0.0843	-0.549	0.425	Re (normal Evans)
CF ₃ COCF ₃	-0.5164	0.0434	-0.415	0.274	Si (non-Evans)
CF ₃ CHO (4a)	-0.4937	0.0699	-0.431	0.246	Si (non-Evans)
Ph(CH ₂) ₃ CF ₂ CHO (4b)	-0.3280	0.1134	-0.487	0.303	Re: Si = 6:94
PhCOCHO (4c)	-0.3549	0.0446	-0.559	0.469	Re: Si = 4:96
EtOCOCHO (4d)	-0.4239	0.0807	-0.476	0.302	Re: Si = 21:79

This reversal in facial selectivity of the enolate may possibly be related to low Lewis basicity and high electrophilicity of the carbonyl of hexafluoroacetone and aldehydes 4a-d. As shown in Table 3, hexafluoroacetone and aldehyde 4a have lower LUMO levels (higher electrophilicity) and lower negative charges of the carbonyl oxygen (lower Lewis basicity) than the aldehydes (CH₃CHO and PhCHO) showing the Re face attack. Aldehydes 4b-d show either lower LUMO or lower negative charges of the carbonyl oxygen than CH₃CHO or PhCHO. With hexafluoroacetone and 4a, the low Lewis basicity prevents the carbonyl oxygen from coordinating with the boron, and the high electrophilicity promots the reaction via open transition states even though the carbonyl does not coordinate with the Lewis acid such as TiCl₄.6

CONCLUSION

The Evans aldol reaction of hexafluoroacetone, trifluoroacetaldehyde (4a) and α,α -difluoroaldehyde 4b causes the reversal of stereoselectivity and proceeds predominantly through open transition states. This reversal in facial selectivity of enolate 1 may possibly be related to low Lewis basicity and the high electrophilicity of these fluorinated carbonyl compounds. This finding was extended to phenylglyoxal (4c) and ethyl glyoxylate (4d), which were shown to react preferentially on the Si face of the enolate double bond of 1. Some other carbonyl compounds having an electron-withdrawing group at the α -position may also lead to the reversal of stereoselectivity.

EXPERIMENTAL

General. Reactions were run under an argon atmosphere with magnetic stirring in oven-dried glassware. CH₂Cl₂ was distilled from CaH₂ immediately before use. THF and ether were freshly distilled from sodium benzophenone ketyl. Trifluoroacetaldehyde (4a) was generated by the addition of trifluoroacetaldehyde methyl hemiacetal to conc. H₂SO₄ at 120 °C. Phenylglyoxal (4c) was obtained from the corresponding hydrate by distillation immediately prior to use, and ethyl glyoxylate (4d) was prepared according to T. R. Kelly et al. 17 Bu₂BOTf was prepared according to the literature. 18 Other solvents and reagents were used as supplied or purified. Anhydrous magnesium sulfate was used as the drying agent. Silica gel 60 (Merck, 230 -400 mesh) was used for column chromatography. Analytical gas chromatography (GLC) was carried out using a GL Science (30-m x 0.25-mm) NEUTRABOND-1 capillary column with a thickness of 1.5 µm. GLC data were obtained for the mixture of isomers produced by aldol condensation. Melting points were uncorrected. Optical rotations were measured at a wavelength of 589 nm using a 1.0-dm cell with a total volume of 1 ml. Infrared spectra were obtained either neat or in KBr pellets. Absorption was expressed as reciprocal centimeters (cm⁻¹). ¹H NMR were recorded at 200 MHz and expressed in parts per million (ppm) downfield from TMS as the internal standard (δ). ¹⁹F NMR spectra were measured at 188 MHz and given in parts per million (ppm) upfield from CCl₃F as the internal standard. Coupling constants are in hertz. CDCl₃ served as solvent for ¹H and ¹⁹F NMR. Low- and high-resolution mass spectral analyses were performed under 70 eV electron-impact (EI) conditions. Elemental analyses were conducted at Toray Research Center Inc., Tokyo. X-ray structure analyses were made at Rigaku Corporation, Tokyo.

Preparation of N-acyloxazolidinone (2). (S)-4-Isopropyl-3-propionyl-2-oxazolidinone (2a) was purchased from Aldrich. (S)-4-Isopropyl-3-(3-phenylpropionyl)-2-oxazolidinone (2b), (S)-3-hexanoyl-4-isopropyl-2-oxazolidinone (2c), (S)-4-benzyl-3-propionyl-2-oxazolidinone (2d) were prepared by literature methods. 8,19

Preparation of α,α -difluoroaldehyde 4b: Ethyl 2,2-difluoro-3-(imidazol-1-yl)thiocarbonyloxy-5-phenylpentanoate. To a solution of ethyl 2,2-difluoro-3-hydroxy-5-pentanoate²⁰ (26.7 g, 103 mmol) in 1,2-dichloroethane (400 ml) was added dropwise N,N'-thiocarbonyldiimidazole (25.0 g, 126 mmol) in 1,2-dichloroethane (100 ml) at 72 °C. After 3 h, the reaction mixture was cooled to room temperature and concentrated in vacuo. Chromatography of the residue with n-hexane-EtOAc (3:1) as eluent gave the corresponding thiocarbonylimidazolide (16.9 g, 44.5%) as a colorless liquid; IR (neat) 1769, 1604; ¹H NMR 1.26 (t, J = 7.3, 3H), 2.26-2.39 (m, 2H), 2.80 (d, J = 7.7, 2H), 4.29 (q, J = 7.3, 2H), 6.11-6.29 (m, 1H), 7.05 (dd, J = 2.0, 1.0, 1H), 7.17-7.32 (m, 5H), 7.57 (t, J = 1.5, 1H), 8.26 (t, J = 0.9, 1H); ¹⁹F NMR 113.21 (dd, J = 266.1, 7.8, 1F), 117.40 (dd, J = 266.1, 13.7, 1F); MS (FAB) m/z 369 [M+1]; HRMS (FAB) Calcd for C₁₇H₁₉N₂O₃SF₂ [M+H] 369.109, found 369.109.

Ethyl 2,2-difluoro-5-pentanoate. To a solution of n-Bu₃SnH (25.0 ml, 92.9 mmol) in refluxing toluene (350 ml) was added dropwise the thiocarbonylimidazolide (16.9 g, 45.8 mmol) in toluene (150 ml). After 3 h at reflux, the reaction mixture was cooled to room temperature and concentrated *in vacuo*. Chromatography of the residue with n-hexane-EtOAc (3:1) gave ethyl 2,2-difluoro-5-pentanoate (9.1 g, 81.9%) as a colorless oil; IR (neat) 2941, 1768, 1603; 1 H NMR 1.33 (t, J = 7.1, 3H), 1.74-2.21 (m, 4H), 2.68 (t, J = 7.4, 2H), 4.30 (q, J

= 7.1, 2H), 7.14-7.35 (m, 5H); 19 F NMR 106.12 (t, J = 17.6); MS m/z 242 [M+], 213, 196, 169, 105, 91, 77; HRMS Calcd for $C_{13}H_{16}O_{2}F_{2}$ [M+] 242.112, found 242.112.

2,2-Difluoro-5-phenylpentanal (4b). To a solution of ethyl 2,2-difluoro-5-pentanoate (1.25 g, 5.16 mmol) was added dropwise DIBAL-H (1.0 ml, 5.61 mmol) at -78 °C. After 30 min, the reaction mixture was quenched by the addition of MeOH, poured into 0.5 N aqueous HCl and extracted with ether. The combined extracts were washed with saturated aqueous NaHCO₃ and brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with *n*-hexane-EtOAc (10:1) gave 2,2-difluoro-5-phenylpentanal ethyl hemiacetal (1.05 g, 83.3%); IR (neat) 3375, 1603; ¹H NMR 1.23 (t, J = 7.1, 3H), 1.80-2.18 (m, 4H), 2.64-2.72 (m, 2H), 3.51-3.99 (m, 3H), 4.62 (ddd, J = 10.4, 8.3, 4.8, 1H), 7.17-7.35 (m, 5H); ¹⁹F NMR 112.86-114.37(m, 1F), 117.71-119.25 (m, 1F); MS m/z 242 [M+], 213, 196, 169, 105, 91, 77; HRMS Calcd for C₁₃H₁₆O₂F₂ [M+] 242.112, found 242.112. The hemiacetal was converted to 4b by heating in refluxing toluene and concentrated *in vacuo* immediately before use. Data for 4b; ¹H NMR 1.77-2.12 (m, 4H), 2.68 (t, J = 7.3, 2H), 7.14-7.36 (m, 5H), 9.47 (s, 1H); ¹⁹F NMR 110.89 (t, J = 18.0);

General Procedure for Reactions with Hexafluoroacetone: (2'R,4S)-4-Isopropyl-3-(4',4',4'-trifluoro-3'-hydroxy-2'-methyl-3'-trifluoromethylbutyryl)-2-oxazolidinone (3a). To a solution of Nacyloxazolidinone 2a (5.06 g, 27.3 mmol) in CH₂Cl₂ (40 ml) was added n-Bu₂BOTf (7.9 ml, 31.4 mmol) at -78 °C over 2 min. After 10 min at the same temperature, Et₃N (5.2 ml, 37.3 mmol) was added over 10 min and the reaction mixture was allowed to warm to 0 °C. After 1 h at 0 °C, the solution was cooled to -78 °C and gaseous hexafluoroacetone (4 ml at -78 °C, 31.8 mmol) was added with a cannula. After 0.5 h at -78 °C, the reaction mixture was brought to and left at -30 °C for 2 h and quenched with pH 7.0 phosphate buffer (0.1 M, 100 ml) and MeOH (100 ml) followed by the addition of 30% H₂O₂-MeOH (50 ml-50 ml). After 1h at 0 °C, the mixture was concentrated in vacuo. The residue was diluted with 10% aqueous NaHCO3 and extracted with CH₂Cl₂. The combined extracts were washed with brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (3:1) as eluent gave 3a (8.65 g, 90.1%) as colorless needles; mp 96.0-98.1 °C (n-hexane-ether); [α]_D²⁴ 48.3°(c 1.00, CHCl₃); IR (KBr) 3295, 1769, 1682; ¹H NMR 0.88 (d, J = 6.9, 3H), 0.94 (d, J = 7.0, 3H), 1.43 (dq, J = 7.1, 2.7, 3H), 2.37 (dsep, J = 7.1, 2.8, 1H), 4.28-4.49 (m, 3H), 4.75 (q, J = 7.0, 1H), 6.53 (s, 1H); ¹⁹F NMR 73.32 (dq, J = 11.5, 1.5, 3F), 76.17 (q, J = 1.5, 1.5, = 11.5, 3F); MS m/z 351 [M+], 282, 223, 175, 86, 69; Anal. Calcd for $C_{12}H_{15}NO_4F_6$; C, 41.0; H, 4.3; N, 4.1. Found: C, 41.1; H, 4.5; N, 4.1.

(2'R,4S)-3-(2'-Benzyl-4',4',4'-trifluoro-3'-hydroxy-3'-trifluoromethylbutyryl)-4-isopropyl-2-

oxazolidinone (3b). The general procedure was followed, using 526 mg (2.0 mmol) of 2b. Chromatography of the residue with *n*-hexane-CH₂Cl₂ (2:1) gave 3b (737 mg, 85.7%) and starting material 2b (45 mg, 8.6%): 3b colorless needles; mp 114.9-115.3 °C (*n*-hexane-ether); $[\alpha]_D^{26}$ 145.5°(c 0.99, CHCl₃); IR (KBr) 3406, 1777, 1686; ¹H NMR 0.74 (d, J = 6.8, 3H), 0.82 (d, J = 7.0, 3H), 2.10-2.28 (m, 1H), 2.99-3.26 (m, 2H), 3.20 (dd, J = 8.8, 7.9, 1H), 3.68 (ddd, J = 7.9, 3.5, 1.8, 1H), 3.87 (dd, J = 8.8, 1.8, 1H), 5.18 (dd, J = 11.4, 5.5, 1H), 6.53 (s, 1H), 7.13-7.35 (m, 5H); ¹⁹F NMR 72.76 (q, J = 11.2, 3F), 76.03 (q, J = 11.2, 3F); MS m/z 427 [M⁺], 260, 131, 91, 69; Anal. Calcd for C₁₈H₁₉NO₄F₆: C, 50.6; H, 4.5; N, 3.3. Found: C, 50.6; H, 4.6; N, 3.3.

General Procedure for Reactions with trifluoroacetaldehyde (4a): (2'R,3'S,4S)- and (2'R,3'R,4S)-4-Isopropyl-3-(4',4',4'-trifluoro-3'-hydroxy-2'-methylbutyryl)-2-oxazolidinone (5a-T₂ and 5a-E₂). To a solution of the boron enolate, prepared from 2a (371 mg, 2.0 mmol) by the procedure given for 3a, was added gaseous trifluoroacetaldehyde (6 mmol) with a cannula at -78 °C. After 30 min at -78 °C, the reaction mixture was brought to and left at 0 °C for 2 h and quenched with pH 7.0 phosphate buffer (0.1 M, 4 ml) and MeOH (6 ml) followed by the addition of 30% H₂O₂-MeOH (3 ml-9 ml). After 1h at 0 °C, the mixture was concentrated in vacuo. The residue was diluted with 10% aqueous NaHCO₃ and extracted with CH₂Cl₂. The combined extracts were washed with brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (5:1) gave 5a-T₂ (295 mg, 52.0%), 5a-E₂ (58 mg, 10.2%) and starting material 2a (19 mg, 5.0%): 5a-T₂ colorless needles; mp 99.0-99.5 °C (n-hexane-ether); $[\alpha]_D^{24}$ 49.4°(c 0.96, CHCl₃); IR (KBr) 3422, 1803, 1680; ¹H NMR 0.88 (d, J = 6.9, 3H), 0.93 (d, J = 7.0, 3H), 1.41 (d, J = 7.0, 3H), 2.30-2.46 (m, 1H), 3.92-4.10 (m, 1H), 4.22-4.49 (m, 4H), 4.57 (d, J = 9.9, 1H); ¹⁹F

NMR 77.57 (d, J = 7.9); MS m/z 283 [M⁺], 265, 240, 214, 196, 155, 127, 86, 69; Anal. Calcd for $C_{11}H_{16}NO_4F_3$: C, 46.7; H, 5.7; N, 5.0. Found: C, 46.7; H, 5.7; N, 5.0; **5a**-E₂ colorless needles; mp 99.2-100.4 °C (*n*-hexane-ether); $[\alpha]_D^{26}$ 62.6°(c 0.87, CHCl₃); IR (KBr) 3430, 1794, 1697; ¹H NMR 0.88 (d, J = 7.0, 3H), 0.93 (d, J = 7.1, 3H), 1.32 (dd, J = 7.0, 0.9, 3H), 2.30-2.46 (m, 1H), 2.95 (d, J = 5.8, 1H), 4.20-4.50 (m, 5H); ¹⁹F NMR 76.90 (d, J = 7.3); MS m/z 283 [M⁺], 265, 240, 214, 196, 155, 127, 86, 69; Anal. Calcd for $C_{11}H_{16}NO_4F_3$: C, 46.7; H, 5.7; N, 5.0. Found: C, 46.6; H, 5.6; N, 5.0.

(2'R,3'S,4S)- and (2'R,3'R,4S)-3-(2'-Benzyl-4',4',4'-trifluoro-3'-hydroxybutyryl)-4-isopropyl-2-oxazolidinone (5b-T₂ and 5b-E₂). The general procedure was followed, using 526 mg (2.0 mmol) of 2b. Chromatography with n-hexane-EtOAc (9:1) gave 5b-T₂ (323 mg, 44.6%), 5b-E₂ (138 mg, 19.1%) and starting material 2b (75 mg, 14.3%): 5b-T₂ colorless needles; mp 65.3-66.5 °C (n-hexane-ether); $[\alpha]_D^{25}$ 110.8°(c 0.98, CHCl₃); IR (KBr) 3354, 1767, 1698; ¹H NMR 0.83 (d, J = 6.9, 3H), 0.89 (d, J = 7.1, 3H), 2.12-2.38 (m, 1H), 3.05 (dd, J = 13.1, 8.9, 1H), 3.15 (dd, J = 13.1, 7.9, 1H), 3.83-4.24 (m, 4H), 4.71 (dt, J = 8.4, 2.4, 1H), 4.85 (d, J = 10.6, 1H), 7.24-7.35 (m, 5H); ¹⁹F NMR 77.64 (d, J = 6.5); MS m/z 359 [M+], 341, 260, 231, 131, 91, 69; Anal. Calcd for C₁₇H₂₀NO₄F₃: C, 56.9; H, 5.6; N, 3.9. Found: C, 56.7; H, 5.4; N, 4.0; 5b-E₂ colorless needles; mp 112.4-113.2 °C (n-hexane-ether); [$\alpha]_D^{25}$ 164.2°(c 0.78, CHCl₃); IR (KBr) 3378, 1780, 1664; ¹H NMR 0.77 (d, J = 7.0, 3H), 0.83 (d, J = 7.0, 3H), 2.12-2.24 (m, 1H), 2.86-3.00 (m, 2H), 3.29 (dd, J = 13.1, 5.4, 1H), 3.45 (dd, J = 9.1, 8.5, 1H), 3.86-3.95 (m, 2H), 4.41-4.58 (m, 1H), 4.85 (dq, J = 7.2, 5.4, 1H), 7.16-7.32 (m, 5H); ¹⁹F NMR 77.37 (d, J = 7.2 Hz); MS m/z 359 [M+], 341, 260, 231, 131, 91, 69; Anal. Calcd for C₁₇H₂₀NO₄F₃: C, 56.9; H, 5.6; N, 3.9. Found: C, 56.7; H, 5.4; N, 4.0.

(2'R,3'S,4S)- and (2'R,3'R,4S)-3-(2'-Butyl-4',4',4'-trifluoro-3'-hydroxybutyryl)-4-isopropyl-2-oxazolidinone (5c-T₂ and 5c-E₂). The general procedure was followed, using 459 mg (2.0 mmol) of 2c. Chromatography with n-hexane-EtOAc (20:1) gave 5c-T₂ (312 mg, 47.6%), 5c-E₂ (75 mg, 11.5%) and starting material 2c (28 mg, 6.0%): 5c-T₂ colorless needles; mp 49.8-50.7 °C (n-hexane-ether); [α] $_0$ 25 61.9°(c 0.53, CHCl₃); IR (KBr) 3437, 1783, 1673; 1 H NMR 0.87 (d, J = 6.9, 3H), 0.91 (t, J = 6.6, 3H), 0.93 (d, J = 7.1, 3H), 1.20-1.50 (m, 4H), 1.76-1.87 (m, 2H), 2.30-2.46 (m, 1H), 3.99-4.50 (m, 5H), 4.75 (d, J = 10.3, 1H); 19 F NMR 77.70 (d, J = 8.0); MS m/z 325 [M+], 307, 197, 130, 86, 69; Anal. Calcd for C₁₄H₂₂NO₄F₃: C, 51.7; H, 6.8; N, 4.3. Found: C, 51.6; H, 6.7; N, 4.4; 5c-E₂ colorless needles; mp 109.6-110.0 °C (n-hexane-ether); [α] $_0$ 24 85.4°(c 0.59, CHCl₃); IR (KBr) 3403, 1758, 1701; 1 H NMR 0.87 (d, J = 6.8, 3H), 0.90 (t, J = 5.9, 3H), 0.93 (d, J = 7.2, 3H), 1.20-1.40 (m, 4H), 1.76-1.88 (m, 2H), 2.29-2.44 (m, 1H), 2.71 (d, J = 6.0, 1H), 4.21-4.52 (m, 5H); 19 F NMR 77.14 (d, J = 6.0); MS m/z 325 [M+], 307, 197, 130, 86, 69; Anal. Calcd for C₁₄H₂₂NO₄F₃: C, 51.7; H, 6.8; N, 4.3. Found: C, 51.6; H, 6.8; N, 4.4.

(2'R,3'S,4S)- and (2'R, 3'R,4S)-4-Benzyl-3-(4',4',4'-trifluoro-3'-hydroxy-2'-methylburyryl)-2-oxazolidinone (5d-T₂ and 5d-E₂). The general procedure was followed, using 468 mg (2.0 mmol) of 2d. Chromatography with *n*-hexane-EtOAc (4:1) gave 5d-T₂ (367 mg, 55.3%), a mixture of 5d-T₂ and 5d-E₂ (53 mg, 8.0%) and 5d-E₂ (111 mg, 16.7%): 5d-T₂ colorless needles; mp 74.5-75.3 °C (*n*-hexane-ether); $[\alpha]_D^{24}$ 25.1°(c 0.99, CHCl₃); IR (KBr) 3413, 1788, 1678; ¹H NMR 1.44 (d, J = 7.1, 3H), 2.72 (dd, J = 13.4, 9.8, 1H), 3.34 (dd, J = 13.5, 3.2, 1H), 3.98-4.28 (m, 3H), 4.38 (dq, J = 7.0, 4.0, 1H), 4.49 (d, J = 9.9, 1H), 4.63-4.75 (m, 1H), 7.20-7.40 (m, 5H); ¹⁹F NMR 77.34 (d, J = 7.0); MS m/z 331 [M+], 313, 262, 155, 86, 69; Anal. Calcd for C₁₅H₁₆NO₄F₃: C, 54.3; H, 4.9; N, 4.2. Found: C, 54.3; H, 4.8; N, 4.3; 5d-E₂ colorless needles; mp 78.2-79.4 °C (*n*-hexane-ether); $[\alpha]_D^{25}$ 35.8°(c 0.19, CHCl₃); IR (KBr) 3441, 1766, 1690; ¹H NMR 1.35 (d, J = 7.1, 3H), 2.74 (dd, J = 13.3, 9.9, 1H), 3.02 (d, J = 5.7, 1H), 3.33 (dd, J = 13.3, 3.3, 1H), 4.18-4.30 (m, 3H), 4.41-4.55 (m, 1H), 4.62-4.74 (m, 1H), 7.20-7.40 (m, 5H); ¹⁹F NMR 76.78 (d, J = 6.7); MS m/z 331 [M+], 313, 155, 86, 69; Anal. Calcd for C₁₅H₁₆NO₄F₃: C, 54.3; H, 4.9; N, 4.2. Found: C, 54.1; H, 4.9; N, 4.2.

Reaction of 2a with 4a in the presence of TiCl₄: To a solution of the boron enolate, prepared from 2a (372 mg, 2.0 mmol) by the procedure given for 3a, was added in one portion TiCl₄ (220 μl, 2.0 mmol) in CH₂Cl₂ (2 ml) at -78 °C. After 0.5 h at -78 °C, gaseous trifluoroacetaldehyde (4a, 6 mmol) was added. The reaction mixture was brought to and left at 0 °C for 1.5 h and quenched with pH 7.0 phosphate buffer (0.1 M, 4 ml) and MeOH (6 ml) followed by the addition of 30% H₂O₂-MeOH (3 ml-9 ml). After 1h at 0 °C, the mixture was concentrated in vacuo. The residue was diluted with 10% aqueous NaHCO₃ and extracted with

CH₂Cl₂. The combined extracts were washed with brine, dried and filtered. After evaporation of the solvent, chromatography of the residue gave **5a**-T₂ (199 mg, 35.0%), **5a**-E₂, (273 mg, 48.0%) and starting material **1a** (23 mg, 6.2%).

Reaction with difluoroacetaldehyde 4b: (2'R,3'S,4S)-, (2'R,3'R,4S)- and (2'S,3'S,4S)-3-(4',4'-Difluoro-3'-hydroxy-2'-methyl-7'-phenylheptanoyl)-4-isopropyl-2-oxazolidinone (5e-T2, 5e-E2 and 5e-E₁). To a solution of the boron enolate, prepared from 2a (168 mg, 0.9 mmol) by the procedure given for 3a, was added 4b (235 mg, 1.19 mmol) in CH₂Cl₂ (2 ml) at -5 °C over 45 min. After 30 min at -5 °C, the reaction mixture was quenched with pH 7.0 phosphate buffer (0.1 M, 4 ml) and MeOH (6 ml) followed by the addition of 30% H₂O₂-MeOH (3 ml-9 ml). After 1h at 0 °C, the mixture was concentrated in vacuo. The residue was diluted with 10% aqueous NaHCO3 and extracted with CH2Cl2. The combined extracts were washed with brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (9:1) gave 5e-T₂ (93 mg, 26.8%), 5e-E₂ (13 mg, 3.8%), 5e-E₁ (6.8 mg, 2.0%) and starting material 2a (69 mg, 41.3%): 5e-T₂ a colorless oil; $\{\alpha\}_D^{25}$ 33.4°(c 0.99, CHCl₃); IR (neat) 3444, 1782, 1698, 1603; ¹H NMR 0.86 (d, J = 6.8, 3H), 0.90 (d, J = 7.1, 3H), 1.38 (d, J = 7.1, 3H), 1.76-2.20 (m, 4H), 2.28-2.45 (m, 1H), 2.67 (t, J = 7.5, 2H), 3.70 (dddd, J = 22.5, 10.3, 4.1, 3.0, 1H), 4.19-4.32 (m, 2H), 4.37-4.49 (m, 2H), 4.60 (d, J = 2.5, 10.3, 10 $= 10.3, 1H), 7.13-7.33 \text{ (m, 5H); } ^{19}\text{F NMR } 107.34-108.87 \text{ (m, 1F), } 110.56-112.15 \text{ (m, 1F); } MS m/z 383 [M+],$ 214, 198, 184, 130, 91; HRMS Calcd for C₂₀H₂₇NO₄F₂ [M+] 383.191, found 383.191; 5e-E₂ a colorless oil; $[\alpha]_D^{25}$ 36.7°(c 1.04, CHCl₃); IR (neat) 3468, 1778, 1698, 1603; ¹H NMR 0.86 (d, J = 6.9, 3H), 0.90 (d, J = 67.0, 3H), 1.38 (d, J = 7.0, 3H), 1.78-2.23 (m, 4H), 2.26-2.45 (m, 2H), 2.67 (t, J = 7.5, 2H), 4.08-4.32 (m, 4H), 2.67 (t, 3H), 3H), 3H0, 3H1, 3H1, 3H2, 3H3, 34.42-4.48 (m, 1H), 7.13-7.33 (m, 5H); ¹⁹F NMR 107.08-108.63 (m, 1F), 111.61-113.18 (m, 1F); MS m/z 383 [M+], 214, 198, 130, 105, 91; HRMS Calcd for C₂₀H₂₇NO₄F₂ [M+] 383.191 found 383.192; 5e-E₁ a colorless oil; $[\alpha]_D^{25}$ 25.4°(c 0.68, CHCl₃); IR (neat) 3444, 1785, 1696, 1604; ¹H NMR 0.84 (d, J = 7.0, 3H), 0.87 (d, J = 6.8, 3H), 1.38 (d, J = 7.1, 3H), 1.80-2.20 (m, 4H), 2.37-2.51 (m, 1H), 2.67 (t, J = 7.5, 2H), 4.02-2.004.48 (m, 5H), 5.48-5.62 (m, 1H), 7.16-7.33 (m, 5H); ¹⁹F NMR 109.40-111.00 (m, 1F), 112.83-114.40 (m, 1F); MS m/z 383 [M+], 214, 198, 130, 105, 91; HRMS Calcd for C₂₀H₂₇NO₄F₂ [M+] 383.191 found 383.192.

Reaction with phenylglyoxal (4c): (2'R,3'S,4S)-, (2'R,3'R,4S)- and (2'S,3'S,4S)-3-(3'-Hydroxy-2'methyl-4'-oxo-4'-phenylbutyryl)-4-isopropyl-2-oxazolidinone (5f-T2, 5f-E2 and 5f-E1). The procedure given for 5e was carried out using 2a (373 mg, 2.0 mmol) and phenylglyoxal 4c (340 mg, 2.50 mmol). Chromatography with n-hexane-EtOAc (9:1) afforded 5f-T₂ (189 mg, 29.4%), 5f-E₂ (148 mg, 23.0%), 5f-E₁ (14 mg, 2.1%) and starting material 2a (64 mg, 17.1%): 5f-T₂ a colorless oil; $[\alpha]_D^{25}$ 65.0°(c 1.00, CHCl₃); IR (neat) 3467, 1778, 1681, 1597; ¹H NMR 0.92 (d, J = 7.1, 3H), 0.94 (d, J = 6.9, 3H), 1.34 (d, J = 7.1, 3H), 2.30-2.48 (m, 1H), 4.20-4.43 (m, 4H), 4.28 (d, J = 4.5, 1H), 5.01 (dd, J = 10.4, 4.8, 1H), 7.46-7.64 (m, 3H), 7.98-8.05 (m, 2H); MS m/z 319 [M⁺], 301, 214, 130, 105, 86, 77; HRMS Calcd for $C_{17}H_{21}NO_{5}$ [M⁺] 319.142, found 319.142; **5f**-E₂ a colorless oil; $[\alpha]_D^{24}$ -29.8°(c 0.81, CHCl₃); IR (neat) 3469, 1769, 1712, 1681, 1598; ¹H NMR 0.84 (d, J = 6.8, 3H), 0.95 (d, J = 7.1, 3H), 0.98 (d, J = 6.9, 3H), 2.34-2.50 (m, 1H), 3.96 (d, J = 6.3, 1 H), 4.17 (dq, J = 6.8, 3.3, 1 H), 4.27 - 4.42 (m, 2H), 4.57 - 4.65 (m, 1H), 5.68 (dd, J = 6.3, 3.3, 1 H)1H), 7.50-7.69 (m, 3H), 8.22-8.28 (m, 2H); MS m/z 319 [M+], 301, 214, 130, 105, 86, 77; HRMS Calcd for $C_{17}H_{21}NO_5$ [M+] 319.142, found 319.142; 5f-E₁ a colorless oil; $[\alpha]_D^{24}$ -14.5°(c 0.51, CHCl₃); IR (neat) 3471, 1786, 1720, 1693, 1600; ¹H NMR 0.88 (d, J = 6.9, 3H), 0.91 (d, J = 7.1, 3H), 0.95 (d, J = 7.0, 3H), 2.39-2.55 (m, 1H), 3.90-4.00 (m, 1H), 4.22 (dq, J = 6.9, 3.9, 1H), 4.23-4.38 (m, 2H), 4.44-4.51 (m, 1H), 5.50-4.00 (m, 1H), 4.20 (dq, J = 6.9, 3.9, 1H), 4.23-4.38 (m, 2H), 4.44-4.51 (m, 1H), 4.50-4.00 (m, 1H), 5.58 (m, 1H), 7.49-7.69 (m, 3H), 8.14-8.20 (m, 2H); MS m/z 319 [M+], 301, 214, 130, 105, 86, 77; HRMS Calcd for C₁₇H₂₁NO₅ [M⁺] 319.142, found 319.142.

Reaction with ethyl glyoxylate (4d): $(2^1R,3^1S,4S)$ -, $(2^1R,3^1R,4S)$ -, $(2^1S,3^1S,4S)$ - and $(2^1S,3^1R,4S)$ -3- $(3^1-Ethoxycarbonyl-3^1-hydroxy-2^1-methylpropionyl)$ -4-isopropyl-2-oxazolidinone (5g-T₂, 5g-E₂, 5g-E₁ and 5g-T₁). The procedure given for 5e was conducted using 2a (370 mg, 2.0 mmol) and ethyl glyoxylate (4d, 250 mg, 2.5 mmol). Chromatography with n-hexane-EtOAc (4:1) gave 5g-T₂ (102 mg, 17.8%), 5g-E₂ (85 mg, 14.9%), 5g-E₁ (31 mg, 5.4%), a mixture of 5g-T₂ and 5g-E₂ (25 mg, 4.3%), a mixture of 5g-T₂, 5g-T₁ and 5g-E₁ (42 mg, 7.2%) and starting material 2a (36 mg, 9.8%). Aldol 5g-T₁ (1.5 mg) was obtained by the chromatography of the mixture 5g-T₂, 5g-T₁ and 5g-E₁ (42 mg) with n-hexane-EtOAc (10:1): 5g-T₂ colorless

needles; mp 56.1-57.9 °C (n-hexane-ether); [α]_D25 59.5°(c 0.58, CHCl₃); IR (KBr) 3458, 1748, 1680; ¹H NMR 0.89 (d, J = 6.9, 3H), 0.91 (d, J = 7.0, 3H), 1.28 (d, J = 6.8, 3H), 1.29 (t, J = 7.1, 3H), 2.30-2.48 (m, 1H), 3.43 (d, J = 9.1, 1H), 4.17-4.49 (m, 7H); MS m/z 288 [M+1], 269, 214, 196, 130; Anal. Calcd for $C_{13}H_{21}NO_6$: C, 54.4; H, 7.4; N, 4.9. Found: C, 54.2; H, 7.2; N, 4.9; $\mathbf{5g}$ - \mathbf{E}_2 a colorless oil; $[\alpha]_D^{25}$ 46.9°(c 1.02, CHCl₃); IR (neat) 3499, 1778, 1732, 1704; ¹H NMR 0.90 (d, J = 6.9, 3H), 0.92 (d, J = 7.1, 3H), 1.16 (d, J = 7.0, 3H), 1.33 (t, J = 7.1, 3H), 2.30-2.48 (m, 1H), 3.08 (d, J = 4.8, 1H), 4.18-4.39 (m, 5H), 4.46-4.54(m, 1H), 4.64 (dd, J = 4.8, 3.8, 1H); MS m/z 288 [M+1], 269, 214, 196, 130; HRMS Calcd for C₁₃H₂₂NO₆ [M+H] 288.145, found 288.146; $\mathbf{5g}$ -E₁ a colorless oil; $[\alpha]_D^{22}$ 79.6°(c 0.38, CHCl₃); IR (neat) 3487, 1780, 1738, 1698; ¹H NMR 0.88 (d, J = 7.0, 3H), 0.92 (d, J = 7.2, 3H), 1.31 (d, J = 7.2, 3H), 1.32 (t, J = 7.2, 3H), 2.27-2.45 (m, 1H), 3.21 (d, J = 4.4, 1H), 4.17-4.37 (m, 5H), 4.42-4.51 (m, 2H); MS m/z 288 [M+1], 269, 214, 196, 130; HRMS Calcd for $C_{13}H_{22}NO_6$ [M+H] 288.145, found 288.144; **5g**-T₁ a colorless oil; $[\alpha]_D^{25}$ 67.4°(c 0.15, CHCl₃); IR (neat) 3460, 1780, 1750, 1689; 1 H NMR 0.87 (d, J = 6.9, 3H), 0.92 (d, J = 7.1, 3H), 1.28 (t, J = 7.1, 3H), 1.39 (d, J = 6.9, 3H), 2.25-2.41 (m, 1H), 3.42 (d, J = 9.4, 1H), 4.18-4.34 (m, 6H), 4.43-4.51 (m, 1H); MS m/z 288 [M+1], 269, 214, 196, 130; HRMS Calcd for C₁₃H₂₂NO₆ [M+H] 288.145, found 288.144; Stereochemical assignments of 5b. The dioxane 6 and the enantiomer of 7 from ethyl (2R,3R)- and (2S,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate. To a suspension of LiAlH₄ (5.0 mg, 132 μmol) in ether (0.5 ml) was added a solution of ethyl (2R,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate¹¹ (6.7 mg, 24 μmol) in ether (0.2 ml) at 0 °C. After 5 min at 0 °C, the reaction mixture was quenched with MeOH, followed by the addition of H₂O-15% aqueous NaOH-H₂O (5 µl-5 µl-15 µl), and filtered. The residue was washed with ether, and the combined ethereal extracts were dried and filtered. After evaporation of the solvent, the diol was dissolved in toluene (1 ml) followed by the addition of benzaldehyde dimethyl acetal (0.1 ml, 660 µmol) and TsOH (1 mg). After stirring at room temperature for 1 h, the reaction was quenched with Et₃N (50 µl) and concentrated in vacuo. Chromatography of the residue with n-hexane-ether (10:1) gave 6 (5.0 mg, quantitatively) as a colorless oil; $[\alpha]_D^{23}$ 120.3°(c 0.71, CHCl₃); IR (neat) 1600, 1129; ¹H NMR 1.97-2.08 (m, 1H), 2.95-3.05 (m, 1H), 3.20 (dd, J = 13.7, 12.1, 1H), 3.81 (dt, J = 11.7, 2.1, 1H), 4.00 (d, J = 1.7) 12.0, 1H), 4.53 (dq, J = 7.3, 2.7, 1H), 5.50 (s, 1H), 7.15-7.50 (m, 10H); ¹⁹F NMR 74.44 (d, J = 7.3); MS m/z322 [M⁺], 245, 216, 199, 105, 91, 77, 69; HRMS Calcd for C₁₈H₁₇O₂F₃ [M⁺] 322.118, found 322.115. In the same manner, ethyl (2S,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate¹¹ (82 mg, 298 µmol) was converted to the enantiomer of 7 (44 mg, 63.7%) as a colorless oil; $[\alpha]_D^{24}$ -14.2°(c 0.87, CHCl₃); IR (neat) 1600, 1170, 1143; ¹H NMR 2.34 (dd, J = 13.7, 10.5, 1H), 2.42-2.62 (m, 1H), 3.06-3.16 (m, 1H), 3.59 (t, J = 11.5, 1H), 4.02 (dd, J = 11.5, 4.7, 1H), 4.12 (dq, J = 10.7, 6.4, 1H), 5.63 (s, 1H), 7.20-7.30 (m, 5H), 7.40-7.45 (m, 3H), 7.40-7.55-7.60 (m, 2H); 19 F NMR 74.53 (d, J = 6.4); MS m/z 322 [M+], 245, 216, 199, 105, 91, 77, 69; HRMS Calcd for C₁₈H₁₇O₂F₃ [M⁺] 322.118, found 322.117.

(2R,4R,5S)-5-Benzyl-4-trifluoromethyl-2-phenyl-1,3-dioxane (6). To a solution of 5b-E₂ (27 mg, 74 μmol) in THF (2 ml) was added LiBH₄ (2.0 M in THF, 150 μl, 300 μmol) at 0 °C. After 1 h at room temperature, the reaction mixture was poured into saturated aqueous NH₄Cl and extracted with CH₂Cl₂. The combined extracts were dried and filtered. After evaporation of the solvent, the diol was converted to 6 (17 mg, 71.4%) according to the procedure described above. This material was identical with 6 prepared from ethyl (2R,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate.

(2S,4S,5S)-5-Benzyl-4-trifluoromethyl-2-phenyl-1,3-dioxane (7). The procedure given for 6 was employed using 5b-T₂ (74 mg, 172 μ mol). Chromatography afforded 7 (14 mg, 42.4%) as a colorless oil; [α]p²⁵ 16.2°(c 1.18, CHCl₃). This material was identical with the enatiomer of 7 prepared from ethyl (2S,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate except for optical rotation.

Stereochemical assignments of 5c. The diol 8 and the enantiomer of 9 from ethyl (R)-3-hydroxy-4,4,4-trifluorobutanoate. Crotylation of ethyl (R)-3-hydroxy-4,4,4-trifluorobutanoate 12 (413 mg, 2.22 mmol) was carried out according to the procedure reported by D. Seebach et al. 11 Chromatography with n-hexane-EtOAc (10:1) gave ethyl (2S,3S)-2-(2-butenyl)-4,4,4-trifluoro-3-hydroxybutanoate (20 mg, 3.8%) and its (2R,3S)-isomer (115 mg, 21.7%). A solution of ethyl (2S,3S)-2-(2-butenyl)-4,4,4-trifluoro-3-hydroxybutanoate (18 mg, 76 μ mol) in EtOH (1 ml) was stirred in the presence of 5% Pd-C (5 mg) under H₂ (1 atm) at room

temperature for 24 h and filtered. Evaporation of the solvent gave the hydrogenated ester, which was reduced with LiAlH₄ according to the procedure described for the reaction of ethyl (2R,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate to give **8** (4.6 mg, 30.3%) as a colorless oil; $[\alpha]_D^{24}$ 31.3°(c 0.70, CHCl₃); IR (neat) 3383; ¹H NMR 0.91 (t, J = 7.0, 3H), 1.24-1.65 (m, 6H), 1.73 (t, J = 4.5, 1H), 1.92-2.60 (m, 1H), 3.19 (d, J = 6.3, 1H), 3.84 (t, J = 5.1, 2H), 4.18-4.34 (m, 1H); ¹⁹F NMR 75.52 (d, J = 8.0); MS m/z 164 [M-36], 132, 113, 95, 69; HRMS Calcd for C₈H₁₁F₃ [M-(H₂O)₂] 164.081, found 164.081. In the same manner, ethyl (2R,3S)-2-(2-butenyl)-4,4,4-trifluoro-3-hydroxybutanoate (113 mg, 470 µmol) was converted to the enantiomer of **9** (62 mg, 85.2%) as a colorless oil; $[\alpha]_D^{24}$ 5.9°(c 0.81, CHCl₃); IR (neat) 3344; ¹H NMR 0.92 (t, J = 7.0, 3H), 1.30-1.45 (m, 4H), 1.60-1.70 (m, 2H), 1.78-2.00 (m, 2H), 3.76-3.85 (m, 1H), 3.96-4.20 (m, 3H); ¹⁹F NMR 77.21 (d, J = 7.6); MS m/z 164 [M-36], 132, 113, 95, 69; HRMS Calcd for C₈H₁₁F₃ [M-(H₂O)₂] 164.081, found 164.081.

(2S,3R)-2-Butyl-4,4,4-trifluoro-1,3-butanediol (8). Aldol 5c-E₂ (92 mg, 282 μmol) was reduced with LiBH₄ according to the procedure for the reaction of 5b-E₂ to give 8 (54 mg, 96.3%). This material was identical with 8 prepared from ethyl (R)-3-hydroxy-4,4-trifluorobutanoate.

(25,35)-2-Butyl-4,4,4-trifluoro-1,3-butanediol (9). Aldol 5c-T₂ (195 mg, 600 μ mol) was reduced with LiBH₄ according to the procedure for the reaction of 5b-E₂ to give 9 (60 mg, 50.0%); [α]_D²⁵ -3.9°(c 0.76, CHCl₃). This material was identical with the enatiomer of 9 prepared from ethyl (R)-3-hydroxy-4,4-trifluorobutanoate except for optical rotation.

Stereochemical assignments of 5d. The benzoates 10 and 11 from 5a-E₂ and 5a-T₂. Aldol 5a-E₂ (188 mg, 0.67 mol) was reduced according to the procedure described for the reaction of 5b-E2 to afford the corresponding diol, which was dissolved in CH₂Cl₂ (5 ml) followed by the addition of pyridine (170 µl, 2.14 mmol) and benzoyl chloride (0.1 ml, 859 µmol) at 0 °C. After 3.5 h at room temperature, the reaction mixture was poured into ice water and extracted with ether. The combined extracts were washed with 0.5 N aqueous HCl, saturated aqueous NaHCO3 and brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (10:1) gave 10 (42 mg, 24.2%) as a colorless oil; $[\alpha]_D^{25}$ 23.9°(c 0.41, CHCl₃); IR (neat) 3473, 1704, 1602; 1 H NMR 1.12 (dq, J = 7.0, 1.0, 3H), 2.38-2.50 (m, 1H), 2.57 (d, J = 6.4, 1H), 4.08-4.24 (m, 1H), 4.24 (dd, J = 11.1, 5.2, 1H), 4.43 (dd, J = 11.1, 9.0, 1H), 7.41-7.63(m, 3H), 8.01-8.06 (m, 2H); 19 F NMR 76.33 (d, J = 7.0); MS m/z 262 [M+], 244, 193, 164, 123, 105, 77, 69; HRMS Calcd for C₁₂H₁₃O₃F₃ [M⁺] 262.082, found 262.080. In the same manner, 4a-T₂ (411 mg, 1.45 mmol) was converted to 11 (90 mg, 23.6%) as a colorless oil; $[\alpha]_D^{25}$ -18.5°(c 0.39, CHCl₃); IR (neat) 3457, 1704, 1602; ¹H NMR 1.23 (dq, J = 7.0, 1.3, 3H), 2.28-2.45 (m, 1H), 2.90 (d, J = 6.0, 1H), 3.86-4.03 (m, 1H), 4.41 (dd, J = 11.3, 4.1, 1H), 4.58 (dd, J = 11.3, 4.7, 1H), 7.40-7.65 (m, 3H), 8.00-8.05 (m, 2H); ¹⁹F NMR 76.28 (d, J = 7.0); MS m/z 262 [M+], 244, 193, 164, 123, 105, 77, 69; HRMS Calcd for $C_{12}H_{13}O_{3}F_{3}$ [M+] 262.082, found 262.082.

(2R,3S)-4-Benzoyloxy-1,1,1-trifluoro-3-methyl-2-butanol (10). The procedure for the reaction of 5a-E₂ was conducted using 53 mg (159 μ mol) of 5d-E₂. Chromatography afforded 10 (10 mg, 24.1%). This material was identical with 10 prepared from 5a-E₂.

(2S,3S)-4-Benzoyloxy-1,1,1-trifluoro-3-methyl-2-butanol (11). The procedure for the reaction of 5a-E₂ was conducted using 144 mg (435 μmol) of 5d-T₂. Chromatography afforded 11 (28 mg, 24.3%). This material was identical with 11 prepared from 5a-T₂.

Stereochemical assignments of 5e. The diols 12 and 13 from (S)-3-benzyloxy-2-methylpropanal. Ethyl (4S)-5-benzyloxy-2,2-difluoro-3-(methoxymethyl)oxy-4-methylpentanoate (19). To a suspension of zinc powder (5.80 g, 88.7 mmol) in refluxing THF (120 ml) was added a solution of (S)-3-benzyloxy-2-methylpropanal (18, 7.6 g, 42.7 mmol) and ethyl bromodifluoroacetate (13.5 g, 66.5 mmol) in THF (30 ml) dropwise over a 1.5 h period. After 1 h at reflux, the reaction mixture was cooled to room temperature, poured into 2 N aqueous KHSO4, filtered and extracted with ether. The combined extracts were washed with brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (10:1) afforded a mixture of ethyl (3S,4S)- and (3R,4S)-5-benzyloxy-2,2-difluoro-3-hydroxy-4-methylpentanoate (8.84 g, 66.0 %) as a colorless oil; IR (neat) 3345, 1773; ¹H NMR 1.05-1.19 (m, 3H), 1.36

 $(t, J = 7.2, 3H), 2.20-2.35 \text{ (m, 1H)}, 2.91 \text{ (d, } J = 6.0, 0.7H), 3.50-3.62 \text{ (m, 2H)}, 3.80-4.00 \text{ (m, 0.7H)}, 4.34 \text{ (q, } J = 0.0, 0.7H), 4.34 \text{ (q, } J = 0.0, 0.0, 0.7H), 4.34 \text{ (q, } J = 0.0, 0.7H), 4.34 \text{ (q, } J = 0.0, 0.0, 0.7H), 4.34 \text{ (q, } J = 0.0, 0.0, 0.7H), 4.34 \text{ (q, } J = 0.0, 0.0, 0.7H), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0, 0.7H), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0, 0.7H), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0), 4.34 \text{ (q, } J = 0.0, 0.0, 0.0), 4.34 \text$ = 7.0, 2H), 4.24-4.55 (m, 2.6H), 7.30-7.40 (m, 5H); MS m/z 302 [M+], 284, 178, 91, 77. A solution of the mixture of the esters (3.45 g, 11.4 mmol) in THF (30 ml) was added to a suspension of 60% NaH (690 mg, 17.3 mmol) in THF (30 ml) at 0 °C. After 10 min, chloromethyl methyl ether (1.2 ml, 15.8 mmol) was added and the reaction mixture was stirred at room temperature for 1 h, poured into saturated aqueous NH₄Cl and extracted with ether. The combined extracts were washed with brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (10:1) afforded ester 19 (3.46 g, 87.4%) as a colorless oil; IR (neat) 1773; ¹H NMR 0.98 (dt, J = 7.0, 1.0, 2H), 1.16 (dt, J = 7.1, 1.1, 1H), 1.30-1.37 (m, 3H), 2.18-2.32 (m, 1H), 3.35 (s, 3H), 3.35-3.64 (m, 2H), 4.00-4.40 (m, 1H), 4.31 (q, J = 7.1, 2H), 4.50 (s, 0.6H), 4.51 (s, 1.4H), 4.65 (d, J = 9.5, 1H), 4.66 (d, J = 9.5, 1H), 7.31-7.35 (m, 5H); 19F NMR 110.18 (dd, J = 9.5), J = 9.5281.0, 9.6, 0.3F), 111.97 (dd, J = 278.5, 11.5, 0.7F), 115.76 (dd, J = 278.5, 17.0, 0.7F), 116.26 (dd, J = 281.0, 16.6, 0.3F); MS m/z 301 [M-45], 255, 223, 195, 91, 77; HRMS Calcd for C₁₅H₁₉O₄F₂ [M-(CH₂OMe)] 301.125, found 301.125. (6S)-7-Benzyloxy-4,4-difluoro-5-(methoxymethyl)oxy-6-methyl-1-phenylheptan-3-ol (20). To a mixture of Mg (17 mg, 699 μ mol) and I₂ (15 mg, 59 μ mol) in ether (2 ml) was added dropwise (2-bromoethyl)benzene (87 µl, 637 µmol) at room temperature. After stirring for 1 h, the mixture was added to a solution of 19 (200 mg, 577 µmol) in ether (2 ml) at 0 °C. The reaction mixture was allowed to warm to room temperature, stirred for 1 h, poured into saturated aqueous NH₄Cl and extracted with ether. The combined extracts were washed with brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (30:1) afforded the starting material (130 mg, 64.8%) and (6S)-7-benzyloxy-4,4-difluoro-5-(methoxymethyl)oxy-6-methyl-1-phenylheptan-3-one (34 mg, 14.6%) as a colorless oil; IR (neat) 1742, 1604; 1 H NMR 0.95 (d, J = 7.0, 1H), 1.12 (d, J = 7.1, 2H), 2.10-2.28 (m, 1H), 2.86-3.08 (m, 4H), 3.29 (s, 3H), 3.28-3.59 (m, 2H), 3.97-4.13 (m, 0.7H), 4.20-4.38 (m, 0.3H), 4.46-4.59 (m, 4H), 7.13-7.34 (m, 10H); ¹⁹F NMR 109.57 (dd, J = 287.0, 9.2, 0.7F), 111.05 (dd, J = 287.0, 10.0, 0.3F), 118.00 (dd, J = 287.0, 17.6, 0.7F), 119.02 (dd, J = 287.0, 20.0, 0.3F); MS m/z 361 [M-45], 345, 283, 105, 91, 77; HRMS Calcd for C₂₁H₂₃O₃F₂ [M-(CH₂OMe)] 361.162, found 361.161. (6S)-7-Benzyloxy-4,4-difluoro-5-(methoxymethyl)oxy-6-methyl-1-phenylheptan-3-one (480 mg, 1.18 mmol) was reduced with LiAlH₄ according to the procedure for the reaction of ethyl (2R,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate to give 20 (479 mg, 99.3%) as a colorless oil; IR (neat) 3423, 1603; ¹H NMR 0.90-1.20 (m, 3H), 1.80-2.10 (m, 3H), 2.51-3.10 (m, 3H), 3.29-3.60 (m, 5H), 3.78-4.08 (m, 2H), 4.48-4.52 (m, 2H), 4.64-4.68 (m, 2H), 7.18-7.34 (m, 10H); ¹⁹F NMR 111.65-113.19 (m, 0.7F), 118.00-122.82 (m, 1.3F); MS m/z 363 [M-45], 345, 285, 257, 107, 91, 77; HRMS Calcd for C₂₁H₂₅O₃F₂ [M-(CH₂OMe)] 363.177, found 363.177. (2R)-4,4-Difluoro-3-(methoxymethyl)oxy-2-methyl-5-phenylheptan-1-ol benzyl ether (21). The procedure given for ethyl 2,2-difluoro-5-pentanoate was carried out using 20 (479 mg, 1.17 mmol). Chromatography with nhexane-EtOAc (3:1) gave 21 (418 mg, 90.6% in two steps) as a colorless oil; IR (neat) 2939, 2857, 1603, 1454, 1101, 1035; ¹H NMR 0.94 (dt, J = 7.0, 0.8, 1H), 1.11 (dt, J = 7.2, 1.0, 2H), 1.81-2.20 (m, 5H), 2.65 (t, J = 7.5, 2H), 3.34 (s, 2H), 3.35 (s, 1H), 3.30-3.90 (m, 3H), 4.48 (s, 1.3H), 4.49 (s, 0.7H), 4.66 (s, 2H), 7.15-7.34 (m 10H); ¹⁹F NMR 104.48-106.51 (m); MS m/z 347 [M-45], 329, 269, 107, 91, 77; HRMS Calcd for C₂₁H₂₅O₂F₂ [M-(CH₂OMe)] 347.182, found 347.182. Conversion of 21 to the diols 12 and 13. A solution of 21 (413 mg, 1.05 mmol) and conc. HCl (0.5 ml) in 1,4-dioxane (10 ml) was stirred at 60 °C for 0.5 h. The reaction mixture was cooled to room temperature and extracted with ether. The combined extracts were washed with saturated aqueous NaHCO3 and brine, dried and filtered. After evaporation of the solvent, the residue was dissolved in EtOH (3 ml) followed by the addition of Raney Ni (1 cm³). After the mixture was stirred under H₂ (1 atm) at room temperature for 36 h, Raney Ni was filtered off and washed with EtOH. Concentrating of the filtrate and chromatography of the residue with n-hexane-EtOAc (3:2) gave 12 (62 mg, 22.8%) and 13 (148 mg, 54.3%): 12 a colorless oil; $[\alpha]_D^{25}$ 14.3°(c 0.69, CHCl₃); IR (neat) 3300, 1604; ¹H NMR 1.01 (d, J = 7.0, 3H), 1.63 (t, J = 5.1, 1H), 1.83-2.09 (m, 5H), 2.35 (d, J = 6.6, 1H), 2.67 (t, J = 7.6, 2H), 3.68 (t, J = 5.4, 2H), 3.92-3.99 (m, 1H), 7.17-7.20 (m, 3H), 7.26-7.30 (m, 2H); 19 F NMR 108.92-109.55 (m, 1F), 110.56-111.19 (m, 1F); MS m/z 258 [M+], 244, 181, 161, 147, 91, 77; HRMS Calcd for $C_{14}H_{20}O_{2}F_{2}$ [M⁺] 258.143 found 258.140; **13** a colorless oil; $[\alpha]_D^{25}$ -1.2°(c 0.75, CHCl₃); IR (neat) 3300, 1603; ¹H NMR

1.07 (d, J = 7.1, 3H), 1.84-2.15 (m, 6H), 2.68 (t, J = 7.6, 2H), 3.49 (d, J = 6.3, 1H), 3.61-3.70 (m, 2H), 3.95 (d, J = 10.5, 1H), 7.17-7.20 (m, 3H), 7.26-7.30 (m, 2H); ¹⁹F NMR 107.63-108.26 (m, 1F), 11.67-111.80 (m, 1F); MS m/z 258 [M⁺], 244, 181, 161, 147, 91, 77; HRMS Calcd for $C_{14}H_{20}O_{2}F_{2}$ [M⁺] 258.143, found 258.144.

(2S,3R)-4,4-Difluoro-2-methyl-7-phenylheptane-1,3-diol (12). Aldol 5e-E₂ (48 mg, 125 μ mol) was reduced with LiBH₄ according to the procedure for the reaction of 5b-E₂ to give 12 (29 mg, 89.2%). This material was identical with 12 prepared from 18.

(2S,3S)-4,4-Difluoro-2-methyl-7-phenylheptane-1,3-diol (13). Aldol 5e- T_2 (108 mg, 281 μ mol) was reduced with LiBH₄ according to the procedure for the reaction of 5b- E_2 to give 13 (41 mg, 56.8%). This material was identical with 13 prepared from 18.

(2R,3S)-4,4-Difluoro-2-methyl-7-phenylheptane-1,3-diol (the enantiomer of 12). Aldol 5e-E₁ (37 mg, 95 μ mol) was reduced with LiBH₄ as described for the reaction of 5b-E₂ to give the enantiomer of 12 (20 mg, 81.9%); [α]D²⁵-14.5°(c 0.51, CHCl₃). This material was identical with the enantiomer of 12 prepared from 18 except for optical rotation.

Stereochemical assignments of 5f. (2S,3S)-2-Methyl-4-phenylbutane-1,3-diol (14). Aldol 5f-E₂ (122 mg, 384 µmol) was reduced with LiBH₄ following the procedure for the reaction of 5b-E₂ to give (25,3R)-2methyl-4-phenylbutane-1,3,4-triol (48 mg, 64.0%); IR (neat) 3395; 1 H NMR 1.06 (d, J = 7.1, 3H), 1.98-2.14 (m, 1H), 2.11 (d, J = 3.5, 1H), 2.20 (s, 1H), 2.42 (s, 1H), 3.61-3.80 (m, 2H), 3.90-3.98 (m, 1H), 4.65 (d, J = 3.5, 1H), 3.61-3.80 (m, 2H), 3.90-3.98 (m, 2H), 4.65 (d, J = 3.5, 1H), 4.65 (d, J = 3.5, 1H),7.8, 1H), 7.30-7.45 (m, 5H); MS m/z 196 [M+], 178, 160, 147, 108, 77. To a solution of the triol (48 mg, 246 μmol) in pyridine (1 ml) was added Ac₂O (230 μl, 2.4 mmol) and DMAP (1.5 mg) at room temperature. The reaction mixture was stirred for 1 h, poured into ice water and extracted with ether. The combined extracts were washed with 2 N HCl, saturated aqueous NaHCO3 and brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (5:1) gave the corresponding triacetate (75 mg, 95.0%) as a colorless oil; IR (neat) 1737; ¹H NMR 1.00 (d, J = 7.0, 3H), 1.86 (s, 3H), 2.03 (s, 3H), 2.10 (s, 3H), 2.13-2.28 (m, 1H), 3.91 (d, J = 6.8, 2H), 5.39 (dd, J = 7.4, 3.5, 1H), 5.90 (d, J = 7.4, 1H), 7.30-7.40 (m, 5H); MS m/z 263 [M-59], 220, 202, 173, 107, 91, 77. A mixture of the triacetate (75 mg, 233 μmol) and 5% Pd-C (150 mg) in AcOH (3 ml) was stirred under H₂ at room temperature for 36 h. The Pd-C catalyst was filtered off and washed with EtOAc. The combined filtrates were washed with saturated aqueous NaHCO3 and brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (10:1) gave (2S,3S)-2-methyl-4-phenylbutane-1,3-diol diacetate (15 mg, 25.0%) as a colorless oil; IR (neat) 1741, 1604; 1 H NMR 1.03 (d, J = 7.0, 3H), 1.97 (s, 3H), 2.03 (s, 3H), 1.97-2.09 (m, 1H), 2.76-2.98 (m, 2H), 3.92 (dd, J = 9.0, 6.5, 1H), 4.00 (dd, J = 9.0, 7.0, 1H), 5.20 (ddd, J = 7.8, 6.5, 3.3, 1H), 7.20-7.34 (m, 5H); MS m/z 204 [M-60], 173, 144, 91, 77. To a solution of the diacetate (11 mg, 42.8 μmol) in MeOH (1 ml) was added anhydrous K₂CO₃ (34 mg, 246 µmol) at room temperature. The reaction mixture was stirred for 1 h, diluted with CH₂Cl₂. The organic layer was washed with H₂O and brine, dried and filtered. After evaporation of the solvent, chromatography of the residue with n-hexane-EtOAc (1:1) afforded 14 (6.2 mg, 80.5%) as a colorless oil; $[\alpha]_D^{25}$ -17.1°(c 0.31, CHCl₃); IR (neat) 3346, 1605; ¹H NMR 1.04 (d, J = 7.1, 3H), 1.79-1.96 (m, 1H), 2.11 (d, J = 3.3, 1H), 2.25 (t, J = 5.3, 1H), 2.78 (d, J = 6.9, 2H), 3.74 (t, J = 5.3, 2H), 4.04-1.044.14 (m, 1H), 7.21-7.38 (m, 5H); MS m/z 162 [M-18], 121, 103, 91, 77; HRMS Calcd for $C_{11}H_{14}O$ [M-H₂O] 162.104, found 162.105. This diol 14 was identical with an authentic sample prepared by using literature procedures. 14

(25,3R)-2-Methyl-4-phenylbutane-1,3-diol (15). Aldol 5f-T₂ (48 mg, 144 µmol) was converted to diol 15 according to the procedure given for 14. Chromatography with *n*-hexane-EtOAc (11:1) afforded 15 (2.7 mg, 18.5% in four steps) as a colorless oil; $[\alpha]_D^{25}$ 59.3°(c 0.27, CHCl₃); IR (neat) 3329, 1602; ¹H NMR 1.01 (d, J = 7.0, 3H), 1.76-1.86 (m, 1H), 2.20 (s, 1H), 2.64 (dd, J = 13.7, 9.5, 1H), 2.82 (s, 1H), 3.00 (dd, J = 13.7, 3.3, 1H), 3.64-3.81 (m, 3H), 7.20-7.38 (m, 5H); MS m/z 180 [M+], 121, 103, 91, 77; HRMS Calcd for C₁₁H₁₆O₂ [M+] 180.115, found 180.114. This diol 15 was identical with an authentic sample prepared by literature procedures.¹⁴

The enantiomer of 14 from 5f-E₁. Aldol 5f-E₁ (85 mg, 257 μ mol) was converted to the enantiomer of 14 by the procedure given for 14. Chromatography with *n*-hexane-EtOAc (11:1) afforded the enantiomer of 14 (7.4 mg, 84.1% in four steps); $[\alpha]_D^{25}$ 25.9°(c 0.40, CHCl₃). This diol was identical with 14 except for optical rotation.

Stereochemical assignments of 5g. Diethyl (2R,3R)-3-methylmalate (16). To a suspension of 60% NaH (38 mg, 950 µmol) in EtOH (2 ml) was added 5g-E₂ (89 mg, 310 µmol) in EtOH (1.5 ml) at 0 °C. After 15 min at 0 °C, the reaction mixture was poured into saturated aqueous NH₄Cl and extracted with ether. The combined extracts were washed with brine, dried and filtered. After evaporation of the solvent, chromatography with *n*-hexane-EtOAc (4:1) gave 16 (41 mg, 64.0%) as a colorless oil; $[\alpha]_D^{23}$ 2.8°(c 1.47, ether); IR (neat) 3350, 1735; ¹H NMR 1.17 (d, J = 7.2, 3H), 1.28 (t, J = 7.1, 3H), 1.31 (t, J = 7.1, 3H), 2.92 (dq, J = 7.2, 3.6, 1H), 3.05 (d, J = 5.4, 1H), 4.19 (q, J = 7.1, 2H), 4.28 (q, J = 7.1, 2H), 4.60 (dd, J = 5.4, 3.6, 1H); MS m/z 204 [M⁺], 131, 113, 85; HRMS Calcd for C₉H₁₆O₅ [M⁺] 204.100, found 204.096. This diester 16 was identical with an authentic sample prepared by using literature procedures. ¹⁵

Diethyl (2S,3R)-3-methylmalate (17). Aldol 5g-T₂ (100 mg, 349 μ mol) was converted to diester 17 according to the procedure for 16. Chromatography afforded 17 (62 mg, 87.2%) as a colorless oil; $[\alpha]_D^{23}$ -10.2°(c 1.14, ether); IR (neat) 3400, 1737; ¹H NMR 1.25 (t, J = 7.2, 3H), 1.29 (d, J = 7.3, 3H), 1.30 (t, J = 7.2, 3H), 3.02 (dq, J = 7.3, 3.5, 1H), 3.15 (d, J = 6.4, 1H), 4.15 (q, J = 7.2, 2H), 4.20-4.33 (m, 3H); MS m/z 204 [M⁺], 131, 113, 85; HRMS Calcd for C₉H₁₆O₅ [M⁺] 204.100, found 204.097. This diester 17 was identical with an authentic sample prepared by literature procedures except for optical rotation.¹⁵

The enantiomer of 16 from 5g- E_1 . Aldol 5g- E_1 (14 mg, 49 μ mol) was converted to the enantiomer of 16 as described for 16. Chromatography afforded the enantiomer of 16 (3.3 mg, 33.0%) as a colorless oil. This diester was identical with an authentic sample prepared by literature procedures except for optical rotation. ¹⁵ The enantiomer of 17 from 5g- T_1 . Aldol 5g- T_1 (1.5 mg, 5.2μ mol) was converted to the enantiomer of 17 following the method for 16. Chromatography afforded the enantiomer of 17 (0.6 mg, 56%) as a colorless oil. This diester was identical with an authentic sample prepared by literature procedures . ¹⁵

ACKNOWLEDGEMENTS

We are grateful to Prof. M. Shibasaki of the University of Tokyo and Prof. T. Taguchi of Tokyo College of Pharmacy for their valuable comments. We also thank Dr. M. Shiro of Rigaku Corporation for conducting the X-ray structure analysis, Dr. Y. Makino for ab initio calculation, and Mr. D. Asada and Miss M. Takahashi for their technical assistance.

REFERENCES AND NOTES

- 1. For reviews see: a) Biomedical Aspects of Fluorine Chemistry; Filler, R.; Kobayashi, Y. Eds.; Kodansha Ltd. and Elsevier Biomedical Press: Tokyo and Amsterdam, 1982. b) Welch, J. T. Tetrahedron 1987, 43, 3123. c) Bravo, P.; Resnati, G. Tetrahedron: Asymmetry 1990, I, 661. d) Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; John Wiley and Sons, Inc.: New York, 1991. e) Selective Fluorination in Organic and Bioorganic Chemistry; Welch, J. T. Ed.; American Chemical Society: Washington, 1991. f) Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications; Filler, R.; Kobayashi, Y.; Yagupolskii, L. M. Eds.; Elsevier: Amsterdam, 1993. g) Resnati, G. Tetrahedron 1993, 49, 9385. h) Iseki, K.; Kobayashi, Y. J. Synth. Org. Chem. Jpn. 1994, 52, 40.
- a) Arakawa, S.; Nito, K.; Seto, J. Mol. Cryst. Liq. Cryst. 1991, 204, 15. b) Bömelburg, J.; Heppke, G.; Ranft, A. Z. Naturforsch. 1989, 1127. c) Buchecker, R.; Kelly, S. M.; Fünfschilling, J. Liquid Cryst. 1990, 8, 217.
- 3. Seebach, D. Angew. Chem. Int. Ed. Engl. 1990, 29, 1320.

a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127. b) Evans, D.A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, Pure Appl. Chem. 1981, 53, 1109. c) Evans, D.A. Aldrichimica Acta 1982, 15, 318.

- a) Danda, H.; Hansen, M. M.; Heathcock, C. H. J. Org. Chem. 1990, 55, 173. b) Heathcock, C. H. Aldrichimica Acta 1990, 23, 99. c) Hayashi, K.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1991, 32, 7287.
- 6. a) Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747. b) Heathcock, C. H. Aldrichimica Acta 1990, 23, 99. c) Chibale, K.; Warren, S. Tetrahedron Lett. 1992, 33, 4369.
- 7. A preliminary communication: Iseki, K.; Oishi, S.; Taguchi, T.; Kobayashi, Y. Tetrahedron Lett. 1993, 34, 8147.
- 8. Evans, D. A. Org. Synth. 1990, 68, 83.
- 9. The reaction does not proceed at -78 °C.
- 10. The reaction scarcely proceeds at < -20 °C.
- 11. Acetal 6 and the enantiomer of 7 were prepared by the reduction of ethyl (2R,3R)- and (2S,3R)-2-benzyl-4,4,4-trifluoro-3-hydroxybutanoate (Seebach, D.; Beck, A. K.; Renaud, P. Angew. Chem. Int. Ed. Engl. 1986, 25, 98) with LiAlH4 and acetalization of the resultant diols, respectively.
- 12. Diol 8 and the enantiomer of 9 were prepared as follows. Crotylation of ethyl (R)-3-hydroxy-4,4,4-trifluorobutanoate (Seebach, D.; Renaud, P.; Schweizer, W. B.; Züger, M. F.; Brienne, M.-J. Helv. Chim. Acta 1984, 67, 1843) gave ethyl (2R,3R)-2-crotyl-4,4,4-trifluoro-3-hydroxybutanoate and its (2S,3R)-isomer. The former was coverted to 8 by hydrogenation (H₂, Pd-C) and reduction (LiAlH₄). In the same manner, the enantiomer of 9 was obtained from the latter.
- 13. Diols 12 and 13 were prepared starting from (S)-3-benzyloxy-2-methylpropanal (Kawabata, T.; Kimura, Y.; Ito, Y.; Terashima, S.; Sasaki, A.; Sunagawa, M. Tetrahedron 1988, 44, 2149) as follows. Treatment of 18 with zinc and ethyl bromodifluoroacetate and methoxymethylation gave ester 19. Grignard reaction of 19 (Mg, Br(CH₂)₂Ph) and reduction with LiAlH₄ gave alcohol 20. Treatment of 20 with N,N'-thiocarbonyldiimidazole and reduction (n-Bu₃SnH in toluene, reflux) afforded 21. Finally, 21 was converted to 12 and 13 by the removal of the MOM group and hydrogenolysis (H₂, Raney Ni). The relative stereochemistry of 13 was shown to be anti by ¹H NMR spectroscopy of acetal 22.

- 14. Tsukada, T.; Kakisawa, H.; Painuly, P.; Shimizu, Y. Tetrahedron Lett. 1989, 30, 4245.
- 15. a) Mori, K.; Iwasawa, H. Tetrahedron 1980, 36, 87. b) Akita, H.; Matsukura, H.; Oishi, T. Chem. Pharm. Bull. 1986, 34, 2656.
- Calculations were performed with GAUSSIAN 90: Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schlegel, H. B.; Raghavachari, K.; Robb, M. A.; Binkley, J. S.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1990.
- 17. Kelly, T. R.; Schmidt, T. E.; Haggerty, J. G. Synthesis 1972, 544.
- a) Inoue, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1980, 53, 174. b) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099.
- a) Evans, D. A.; Britton, T. C.; Dorow, R. L.; Dellaria, Jr. J. F. Tetrahedron 1988, 44, 5525. b) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 77.
- 20. Linderman, R. J.; Graves, D. M. J. Org. Chem. 1989, 54, 661.